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Time resolved correlation �TRC� is a recently introduced light scattering technique that allows one to detect
and quantify dynamic heterogeneities. The technique is based on the analysis of the temporal evolution of the
speckle pattern generated by the light scattered by a sample, which is quantified by cI�t ,��, the degree of
correlation between speckle images recorded at time t and t+�. Heterogeneous dynamics results in significant
fluctuations of cI�t ,�� with time t. We describe how to optimize TRC measurements and how to detect and
avoid possible artifacts. The statistical properties of the fluctuations of cI are analyzed by studying their
variance, probability distribution function, and time autocorrelation function. We show that these quantities are
affected by a noise contribution due to the finite number N of detected speckles. We propose and demonstrate
a method to correct for the noise contribution, based on a N→� extrapolation scheme. Examples from both
homogeneous and heterogeneous dynamics are provided. Connections with recent numerical and analytical
works on heterogeneous glassy dynamics are briefly discussed.
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I. INTRODUCTION

Soft glassy systems such as concentrated colloidal sus-
pensions, emulsions, surfactant phases, gels, and foams ex-
hibit very slow and unusual dynamics, characterized by non-
exponential relaxations of correlation and response
functions, which often depend on sample history and may be
heterogeneous both in space and time �1�. These phenomena
have attracted a great interest, in part due to their “universal”
character. Examples of unifying descriptions are the mode
coupling theory of the stationary average dynamics of con-
centrated suspensions of particles with both repulsive or at-
tractive interactions �2–4� or, at a more qualitative level, the
concept of jamming, which rationalizes the fluid-to-solid
transition in a wide range of systems and experimental con-
figurations �5�. Additionally, soft glassy materials often ex-
hibit intriguing similarities with hard condensed matter
glasses, such as the dependence of the dynamics on sample
history �aging phenomena �6,7�, rejuvenation and memory
effects �8,9�� or the presence of dynamical heterogeneity
�10–12�.

Light scattering is a popular means to measure the aver-
age dynamics. In a traditional dynamic light scattering ex-
periment, one measures the normalized time autocorrelation
function of the scattered intensity g2���= I1�t�I1�t+�� / I1�t�2,
where the average ¯ is over time t and I1�t� is the intensity
collected by a single detector. The intensity autocorrelation
function provides quantitative information on the dynamics
of the sample; the way this information is extracted depends
on the experimental configuration. In single scattering ex-
periments, g2��� is related to the intermediate scattering
function f��� via the Siegert relation f���=��−1�g2���−1�,
where � is the coherence factor that depends on the size ratio

between the speckle—or coherence area—and the detector
�13,14�. In the opposite limit of strong multiple scattering,
the diffusing-wave spectroscopy �DWS� formalism �15� al-
lows the particle mean square displacement to be calculated
from g2���−1, provided that the dynamics be spatially and
temporally homogeneous. For glassy systems the average
over time required to compute g2��� may become in practice
unfeasible, either because the dynamics is so slow that pro-
hibitively long experiments would be required to accumulate
a satisfactory statistics, or because the dynamics may be non-
stationary, e.g., for aging systems. Various schemes have
been introduced to address this issue, most of them based on
the idea of measuring g2��� for many independent speckles
and averaging the intensity correlation function not only over
time, but also over distinct speckles. This can be done either
sequentially—e.g., by slowly rotating the sample so as to
illuminate a single detector with different speckles �inter-
leave �16� or echo �17� methods �18��—or in parallel, e.g.,
by using the pixels of a charge-coupled device camera
�CCD� as independent detectors �multispeckle method
�19–21��.

These techniques drastically reduce the required time av-
erage and thus extend the applicability of light scattering to
glassy systems. Similarly to traditional light scattering mea-
surements, however, they provide information only on the
average dynamics, not on its fluctuations. However, recent
theoretical and simulation works suggest that dynamic het-
erogeneity is a key feature of the slow dynamics in glassy
systems. In view of the very limited number of experiments
that directly test this behavior on soft glasses �10,11�, new
experimental tools that access fluctuations of the dynamics
are needed. We have recently introduced the time resolved
correlation �TRC� scheme �22�, a method that allows tempo-
rally heterogeneous dynamics to be investigated by scatter-
ing techniques. The idea at the heart of TRC is that the tem-
poral evolution of the speckle pattern generated by the*Electronic address: lucacip@lcvn.univ-montp2.fr
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scattered light will be very different for homogeneous vs.
heterogeneous dynamics. For homogeneous dynamics, we
expect the speckle images to change smoothly in time. By
contrast, for heterogeneous dynamics the speckle pattern is
expected to evolve discontinuously, because the rate of
change of the sample configuration will not be constant but
rather fluctuate with time. Experimentally, the speckle im-
ages are recorded by a CCD camera and their evolution is
quantified by introducing cI�t ,��, the degree of correlation
between images taken at time t and t+� �a rigorous definition
will be given in Sec. II�. Inspection of the t dependence of cI
at fixed � allows temporally heterogeneous dynamics to be
discriminated from homogeneous dynamics. Indeed, in the
former case a large drop �increase� of cI is observed when-
ever the dynamics is faster �slower� than average, while in
the latter the degree of correlation is constant. This method is
quite general, since it can be applied to any experimental
configuration where a multielement detector can be used to
record the speckle pattern generated by a sample illuminated
by coherent radiation. Examples are CCD-based light scat-
tering experiments in the single scattering regime, both at
wide �20� and small angle �21�, DWS in the transmission
�23� or backscattering �24� geometry, and x-photon correla-
tion spectroscopy �XPCS� at small angles �25�. In principle,
the technique could also be extended to nonelectromagnetic
radiation, e.g., to acoustic DWS �26�.

Experiments on diluted suspensions of colloidal Brownian
particles have shown that the degree of correlation exhibits
some fluctuations even in the absence of dynamic heteroge-
neity �22�. As it will be shown in detail, these fluctuations are
due to statistical noise stemming from the finite number of
speckles in the CCD images. In order to exploit quantita-
tively TRC data it is thus necessary to separate the contribu-
tion to the fluctuations of cI due to the noise from that due to
dynamic heterogeneity. Although in most cases it is not pos-
sible to directly correct the TRC time series for the noise, we
will show that it is possible to correct statistical quantities
derived from the TRC data and used to quantify the fluctua-
tions of cI. We focus in particular on three statistical objects:
the time variance of cI�t ,��, the probability distribution func-
tion �PDF� of cI�t ,�� for a fixed �, and the time autocorrela-
tion of the cI�t ,�� trace itself.

The variance of cI ,�cI

2 ���, is the lowest moment of the
data that provides information on the fluctuations. It corre-
sponds to the so-called dynamical susceptibility �4 studied in
many simulation and theoretical works on glassy systems
�27–30�. In a typical simulation, �4 is the variance of the
intermediate scattering function, or a similar correlation
function describing the system’s change in configuration,
which is obtained from several independent runs. Similarly,
�cI

2 quantifies the fluctuations of the intensity correlation
function as the system evolves through statistically indepen-
dent configurations. Importantly, �cI

2 allows one to relate
temporal dynamic heterogeneity to spatial correlations of the
dynamics. In fact, it can be shown that �4 is the volume
integral of the spatial correlation of the local dynamics �31�.
Therefore, large values of �cI

2 will be indicative of long-range
correlations of the dynamics. Intuitively, one can expect the
variance of the fluctuations of the dynamics to scale as the

inverse number of “dynamically independent” regions in the
scattering volume, and thus to increase as the spatial range of
the correlation of the dynamics increases. Recent TRC ex-
periments on a shaving cream foam support this simple pic-
ture �12�.

The PDF of the TRC signal is the most complete statisti-
cal characterization of the dispersion of the data. Any devia-
tion from a Gaussian shape immediately hints to heteroge-
neous dynamics, as suggested by experiments on a variety of
systems, including colloidal gels �22,32,33�, concentrated
colloidal suspensions �34� and surfactant phases �35�, foams
�36�, and granular materials �37�. Remarkably, the shape of
the PDF of cI is often strongly reminiscent of that obtained
for similar quantities in theoretical and simulation work on
other glassy systems. An example is provided by simulations
of spin glasses, where the fluctuations of the correlation
function of the spin orientation are distributed according to a
generalized Gumbel PDF �38�, a probability distribution
characterized by an exponential tail strikingly similar to
those reported for cI in Refs. �22,32–35,37� or shown in this
paper �see Figs. 8 and 11�. Similar distributions are also ob-
tained in a variety of numerical and analytical investigations
of systems with heterogeneous dynamics, both at equilibrium
and out-of-equilibrium �29,39–41�. Indeed, it has been pro-
posed that the Gumbel distribution arises as a universal PDF
for various quantities measured in systems with extended
spatial and/or temporal correlations �42�. Clearly, in order to
compare in detail and quantitatively the PDF measured in
TRC experiments to those obtained analytically or by simu-
lations it is necessary to correct the experimental data for the
contribution of the measurement noise.

The variance and the PDF of cI describe the dispersion of
the data, but are insensitive to the way the fluctuations are
distributed in time. By contrast, the time autocorrelation of
the TRC signal, which was introduced in Ref. �35� and which
we shall term “second correlation,” provides information on
the temporal organization of the fluctuations of the dynam-
ics, and sheds light on the rate and lifetime of rearrangement
events. The second correlation introduced here is similar to
the fourth order intensity correlation function proposed by
Lemieux and Durian �43,44� and to the multitime correlation
functions measured in nuclear magnetic resonance experi-
ments probing dynamical heterogeneity near the glass tran-
sition �45�. Moreover, we note that the second correlation is
the analogous, in the time domain, of the so-called second
spectrum originally introduced to investigate non-Gaussian
fluctuations in the dynamics of spin glasses �46�.

In this paper, we first describe how to optimize a TRC
measurement by correcting the CCD data for the dark noise,
due to the electronic noise of the CCD, and for the uneven
illumination of the detector �Sec. II�. We then turn to the
temporal fluctuations of cI and analyze separately the contri-
bution of the measurement noise, due to the finite number of
pixels �Sec. III� and that due to heterogeneous dynamics
�Sec. IV�. We illustrate our analysis by showing TRC data
obtained mainly from a dilute suspension of Brownian par-
ticles and a shaving cream foam, two model systems that
exhibit homogeneous and heterogeneous dynamics, respec-
tively. We then introduce a method for correcting the experi-
mentally measured variance and PDF of cI for the noise con-
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tribution. The method consists of an extrapolation scheme
based on the observation that the measurement noise van-
ishes in the limit N→� �N being the number of CCD pixels
used to calculate cI�, whereas the fluctuations due to dynami-
cal heterogeneities are independent of N. In Sec. V we intro-
duce the second correlation and provide a working formula
for correcting it for the noise contribution. Possible artifacts
that may affect the fluctuations of cI and lead to spurious
contributions to its PDF and to the second correlation are
discussed in Sec. VI, together with methods to detect or cor-
rect them. In the concluding section, we briefly discuss the
connections between TRC and other techniques that measure
dynamical heterogeneities in soft glassy systems, focussing
on the advantages and the limitations of the various methods.

II. TIME RESOLVED CORRELATION:
MEASURING THE TIME-DEPENDENT DEGREE

OF CORRELATION cI„t ,�…

In a TRC experiment �22� a CCD camera is used to
record, at constant rate, the speckle pattern of the light scat-
tered by the sample �14�. The CCD images are stored on the
hard disk of a personal computer �PC� for later processing.
The degree of correlation cI between speckle patterns at
times t and t+� is then calculated according to

cI�t,�� =
G2�t,��

I�t�I�t + ��
− 1, �1�

where G2�t ,��= �Ip�t�Ip�t+���p and I�t�= �Ip�t��p, with Ip�t�
the intensity measured at time t by the pth CCD pixel and
�¯�p an average over N pixels. Note that the normalization
factor in Eq. �1�, I�t�I�t+��, allows us to cancel out exactly
any fluctuations due to changes in the laser power. For sta-
tionary dynamics, the intensity correlation function usually
measured in a light scattering experiment g2��� may be ob-
tained from g2���−1=cI�t ,��.

In Eq. �1� the intensity value at each pixel is required. In
practice, however, the images recorded by the CCD are af-
fected by a pixel- and time-dependent dark �or electronic�
noise Dp�t� and, possibly, by the nonuniform illumination of
the detector, depending on the setup optics. To account for
these effects, we write the raw signal for pixel p Sp as
Sp�t�= Ip�t�bp / �bp�p+Dp�t�, where bp is a time independent,
spatially slowly varying function that accounts for nonuni-
form illumination and �bp�p is introduced so that the factor
multiplying Ip�t� has unit average. Prior to each measure-
ment, we collect 100 dark images by covering the CCD de-
tector with a black cap. These dark images are used to cal-
culate the time-averaged dark noise Dp. The raw signal is
corrected by subtracting, pixel by pixel, the average dark
noise. To estimate bp, we average over time the dark-noise-
corrected CCD signal: bp=Sp�t�−Dp. For experiments whose
duration Texp is much longer than the relaxation time of
g2���, �0, this procedure averages out the spatial fluctuations
associated with the speckles and leads to a smooth function
bp, since for each pixel the intensity fully fluctuates many
times and its time average is a good estimator of the mean
intensity at a given location of the CCD detector. By con-

trast, when Texp��0, bp keeps some memory of the speckled
appearance of the instantaneous intensity distribution. In this
case, we further smooth bp by averaging it over a few adja-
cent pixels. The desired intensity to be used in Eq. �1� is
obtained from

Ip�t� = �Sp�t� − Dp��bp�p/bp. �2�

Note that Ip�t� is still affected by an instanteneous noise
�p�t�=Dp�t�−Dp, since only the average dark noise could be
subtracted. By definition, �p=0, while the standard deviation
�� of � is typically of the order of 1 /100 of the saturation
level for an eight-bit CCD camera. When all the relevant
time scales of the dynamics are much longer than the inverse
CCD rate, �p�t� may be considerably reduced by averaging
Ip�t� over a few CCD images before applying Eq. �1�. In the
following, we will disregard �p�t�, unless when explicitly
stated.

We show in Fig. 1 how the different corrections discussed
above affect the intensity autocorrelation function measured
for a dilute suspension of monodisperse Brownian particles.
Data are collected in the single scattering geometry, at a
scattering angle 	=45°. The particles are polystyrene spheres
of radius a=265 nm, suspended at a volume fraction

=3.7�10−5 in almost pure glycerine cooled at 15 °C in
order to make the dynamics slow enough to match the lim-
ited acquisition rate of the CCD, which is 2 Hz in this ex-
periment. Both the dark noise and the nonuniform illumina-
tion result in a spurious increase of the base line of the
autocorrelation function �squares and circles in Fig. 1� and
lead to a change of its �→0 intercept �see inset�. However,
the relaxation time obtained from the small � behavior of the
intensity autocorrelation function is essentially unaffected by
the dark noise and the nonuniform illumination. When the

FIG. 1. �Color online� Semilogarithmic plot of the intensity time
autocorrelation function measured for a suspension of monodis-
perse Brownian particles in the single scattering regime
�	=45° �. Data are averaged over N=151 800 pixels and over
Texp=10 800. Squares: intensity autocorrelation function calculated
from the CCD raw signal Sp�t�; circles: the same data after correct-
ing for the dark noise only; triangles: after correcting for both the
dark noise and the uneven detector illumination. The line is a fit to
the corrected data by a single exponential decay, the functional form
of g2−1 predicted for monodisperse Brownian particles, yielding a
characteristic time �0=5.8. Inset: zoom of the small � behavior of
the intensity autocorrelation function.
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CCD signal is corrected according to Eq. �2� �up triangles�, a
single exponential decay is observed, as predicted for mono-
disperse Brownian particles. For the corrected data, the base
line is limited only by the dark noise �p�t�: its value is of the
order of 2�10−4 and is comparable to that obtained in tra-
ditional light scattering setups, which use a photomultiplier
tube or an avalanche photodiode as a detector.

III. TEMPORAL FLUCTUATIONS OF cI„t ,�…: THE NOISE
CONTRIBUTION

When disregarding the fluctuations of �p�t�, the temporal
fluctuations of the degree of correlation cI�t ,�� at a fixed lag
� have only two independent sources: the statistical noise due
to the finite number of speckles probed in the experiment and
the intrinsic fluctuations of the sample dynamics. The first
contribution is always present: we shall refer to it as to the
“measurement noise,” not to be confused with the dark noise
discussed in Sec. II. The second contribution, on the con-
trary, is present only if the dynamics is temporally heteroge-
neous and thus represents the physically valuable informa-
tion that we aim to extract from the fluctuations of cI. To
highlight the two different contributions, we rewrite Eq. �1�
as

cI�t,�� = g2�a1�t�,…,ak�t�;�� − 1 + n�t,�� , �3�

where n�t ,�� is the measurement noise, with n�t ,��=0, and
g2�a1�t� ,… ,ak�t� ;��−1 is the pixel-averaged two-time inten-
sity correlation function that would be measured in the ab-
sence of any noise, i.e., if cI was averaged over an infinite
number of speckles. a1�t� ,… ,ak�t� are parameters that fluc-
tuate with time if the dynamics are heterogeneous, but are
constant for homogeneous dynamics.

To illustrate this point, let us consider as an example of
homogeneous dynamics the single scattering measurement of
the dynamics of monodisperse Brownian particles at a scat-
tering vector q. If the temperature is carefully controlled, the
diffusion coefficient D of the particles does not evolve with
time and g2�a1�t� ,… ,ak�t� ;��−1=a1exp�−a2��, with a1=�
and a2=2q2D constant �13�. In this case, the fluctuations of
cI are due only to the noise n�t ,��. By contrast, the spatially
and temporally localized bubble rearrangements in a shaving
cream foam provide a simple example of heterogeneous dy-
namics. For a foam, the average intensity correlation func-
tion measured in a DWS experiment in the transmission ge-
ometry has a shape very close to that for Brownian particles
in single scattering: g2���−1=� exp�−�2�̄��
̄�, with 
̄�0.9

and �̄= R̄r3L2 / l*2 �47,48�. Here, R̄ is the average bubble re-
arrangement rate per unit time and unit volume, r3 is the
typical volume that is rearranged by a single event, L is the
sample thickness, and l* is the photon transport mean free
path. In contrast with the Brownian suspension, however, the
degree of correlation measured for a foam fluctuates not only
because of the noise, but also because the instantaneous re-
arrangement rate continuously changes due to the intermit-
tent nature of the bubble dynamics �12,36�. Hence, for the
foam g2�a1�t� ,… ,ak�t� ;��−1=a1exp− �a2�t���a3�t�, with
a1=� const while a2�t�=R�t�r3L2 / l*2 and a3�t�=
�t� fluctu-
ate with time.

In view of the correction scheme described in Secs. IV
and V, it is useful to first analyze the contribution to the
fluctuations of cI due to the noise. We assume that the sample
dynamics be temporally homogeneous and stationary, as for
the dilute suspension of Brownian particles discussed above.
In this case, the parameters a1 ,… ,ak in Eq. �3� are constant
and the fluctuations of cI are due only to the noise term
n�t ,��. Since cI�t ,�� is averaged over a large number of pix-
els �typically N�10 000�, its temporal fluctuations at a fixed
� are expected to be Gaussian distributed, because of the
central limit theorem �see Appendix B�. Accordingly,
only cI and the variance �n

2��� of the noise n�t ,�� are
needed to obtain the full probability distribution of
cI : PcI

�cI�= �2��n
2�−1/2exp�−�cI−cI�2 /2�n

2�. For homogeneous
dynamics, �n

2���=�cI

2 ���	cI�t ,��2−cI�t ,��2. To calculate �cI

2 ,
we recall that the variance of a quantity y that depends on the
m variables x1 ,… ,xm is given by

�y
2 = 


i=1

m � �y

�xi
�

xi=xi

2

�xi

2 + 

i�j

� �y

�xi

�y

�xj
�xi=xi

xj=xj

�xi,xj
, �4�

where �xi

2 	xi
2−xi

2 is the variance of xi and �xi,xj
	xixj

−xi xj is the covariance between xi and xj �i� j�. The first
sum accounts for the sensitivity of y to the fluctuations of the
independent variables x1 ,… ,xm, while the second sum ac-
counts for any correlations between the xi’s. If distinct xi’s
are uncorrelated, xixj =xi xj for i� j and the second sum van-
ishes.

By applying Eq. �4� to the definition of cI, Eq. �1�, we find

�cI

2 ��� = 1/Ī4�G2

2 ��� + 2G2���2/Ī6�I
2 + 2G2���2/Ī6�I,J���

− 4G2���/Ī 5�G2,I��� , �5�

where we have introduced the notation J�t�	 I�t+��. In writ-

ing Eq. �5� we have used Ī= J̄ and �G2,I=�G2,J, because the
scattered light was assumed to be stationary.

The physical origin of the fluctuations of I and G2, quan-
tified by �I

2 and �G2

2 , as well as that of the correlation be-
tween I and J and between I and G2, quantified by �I,J and
�G2,I is the finite number of pixels over which the instanta-
neous intensity and the intensity correlation are averaged. To
illustrate this point, let us consider as an example I�t�. As the
sample evolves through different configurations, the speckle
pattern fluctuates with a characteristic time �0. Since the in-
stantaneous pixel-averaged intensity is calculated for a finite
set of speckles, different speckle patterns yield slightly dif-
ferent values of I�t�. The larger the number of the sampled
speckles, the closer will I�t� be to the “true” value of the

average scattered intensity, whose estimator is Ī, and thus the
smaller will be �I

2. Indeed, we show in Appendix A that
�I

2
N−1, as expected from the central limit theorem. More-
over, one expects the instantaneous pixel-averaged intensity
at time t to be correlated to the same quantity measured at
time t+�, at least for ���0, because it takes a few �0 for the
speckle pattern to be completely renewed. Therefore, the co-
variance term �I,J��� will vanish only for ���0. More pre-
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cisely, we expect �I,J��� to be proportional to G2���. In fact,
�I,J��� is precisely the un-normalized correlation function
measured by using the whole CCD chip as a single detector,
similarly to the case of a traditional light scattering experi-
ment where the detector collects a large number of speckles.

Similar arguments may be invoked for �G2

2 ��� and
�G2,I���, suggesting that the variance and covariance factors
in Eq. �5� scale with N−1 and depend linearly on the average
correlation function

�xi,xj
��� = N−1�Axi,xj

+ Bxi,xj
cI���� , �6�

where xi and xj stand for any of I , J, and G2, while Axi,xj
and

Bxi,xj
are constants whose values are given in Appendix A. To

test the linear dependence of the variance and covariance
factors on the time-averaged correlation function, we plot
parametrically �G2

2 ��� ,�I,J���, and �G2,I��� as a function of
cI���, for data obtained in the single scattering experiment on
Brownian particles, as shown in Fig. 2. In all cases the data
are very well fitted by straight lines, thus confirming the
validity of Eq. �6�.

The � dependence of the variance of the measurement
noise can be obtained by substituting Eq. �6� into Eq. �5�.
Using G2���= Ī2�cI���+1� �see Appendix B�, one finds a third
order polynomial dependence of the variance of n�t ,�� on
cI���:

�n
2��� = �cI

2 ��� = N−1

l=0

3

�lcI���l, �7�

where the coefficients �l can be obtained from Ī, Axi,xj
, and

Bxi,xj
. Note that this third-order polynomial dependence is

due to the choice of the normalization of cI �see Eq. �1��. If

the denominator was chosen to be Ī2, as in traditional light
scattering experiments, only the first term in the right-hand
side �RHS� of Eq. �5� would be nonzero and �cI

2 �����G2

2 , i.e.,
the fluctuations would increase linearly with cI���. Although
the normalization we have chosen leads to a more compli-
cated expression for �n

2���, we remind that it suppresses spu-
rious variations of cI due to fluctuations of the incoming
beam power and thus should be used in TRC experiments.
The inset of Fig. 3 shows a semilogarithmic plot of �cI

��� vs

� for the Brownian particles, confirming that the noise of cI
decreases with �, as indicated by Eq. �7�. In the main plot,
the same data are plotted parametrically as a function of
cI���. A very good agreement is found between the experi-
mental data and the polynomial form suggested by Eq. �7�,
as shown by the line.

The N−1 dependence of �n
2��� is the key feature that will

be exploited in the correction for the measurement noise. To
test this scaling, we analyze the time series of speckle images
recorded for the Brownian particle suspension, for which
�cI

2 =�n
2, by processing different number of pixels. First, all

pixels of each image are processed and cI�t ,�� and its vari-
ance �cI

2 ��� are calculated. Each image is then divided into
two regions of interest �ROI� of equal size. For each ROI, cI
and its variance are calculated and the values of �cI

2 ��� ob-
tained for the two ROIs are averaged, yielding the variance
of cI when only N /2 pixels are processed. This scheme is
iterated until the size of each ROI is reduced to 225 pixels.
Figure 4 shows �cI

2 ��� as a function of the inverse number of
processed pixels N−1 for three time delays corresponding to
0.09, 0.87, and 8.7 times the relaxation time of g2−1, respec-
tively. In all cases, the data for N−1�1.2�10−4 are very well
fitted by a straight line that goes through the origin, as shown
in the inset �49�. This confirms that for temporally homoge-
neous dynamics �cI

2 �N−1, as indicated by Eq. �7�. Note that

FIG. 2. �Color online� Parametric plot of the normalized vari-
ance and covariance terms in the RHS of Eq. �5�, as a function of
cI���, for the same experiment as in Fig. 1. The lines are linear fits
to the data, suggesting the cI dependence of Eq. �6�.

FIG. 3. Main plot: parametric representation of the variance of
cI as a function of cI��� for the same experiment as in Figs. 1 and 2
�single scattering from a dilute suspension of Brownian particles�.
The line is a fit of Eq. �7� to the data. Inset: same data plotted vs �.

FIG. 4. �Color online� For the same experiment on Brownian
particles as in the preceding figures: variance of cI as a function of
the inverse number of pixels over which cI is averaged. The lines
are linear fits to the data for N−1�1.2�10−4, demonstrating that for
large N �cI

2 �N−1. The inset zooms in the region near to the origin.
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a deviation from this linear trend is observed at the largest
N−1, due to edge effects. In fact, the contribution of each
pixel to cI is not completely independent from that of nearby
pixels, because the intensity of the speckle pattern is spa-
tially correlated over a distance of a few pixels. Pixels far
from the edges of a ROI have more nearby pixels than those
on the edges; accordingly, the statistically independent con-
tribution to cI carried by a bulk pixel is less than that of an
edge pixel. When reducing the size of the processed ROI, the
weight of edge pixels relative to bulk pixels increases and
corrections to the N−1 scaling become increasingly apparent.
These corrections are negligible for N�8000, as seen in Fig.
4. We find that a similar N−1 scaling is obtained at all time
delays �data not shown�. Indeed, the slopes of the straight
line fits to �cI

2 vs N−1 provide an estimate of the proportion-
ality coefficient 
l=0

3 �lcI���l that agrees within 1% with the
value directly obtained when calculating �cI

2 by processing
the maximum number of available pixels.

For temporally homogeneous dynamics, the statistics of
the variables G2�t ,�� and I�t� in Eq. �1� is Gaussian, because
of the central limit theorem. As a consequence, the probabil-
ity density function �PDF� of cI is also Gaussian, as demon-
strated in Appendix B. In Fig. 5 we show the PDF of cI for
various � for a Brownian suspension of particles. The sym-
bols are the experimental data, while the lines are Gaussian
PDFs with mean cI��� and standard deviation �cI

��� obtained
directly from the cI time series, without any fitting param-
eters. An excellent agreement between the data and the the-
oretical shape of the distributions is observed at all �.

IV. TEMPORALLY HETEROGENEOUS DYNAMICS:
CORRECTIONS FOR THE NOISE CONTRIBUTION

In temporally heterogeneous dynamics, the fluctuations of
cI are due both to the noise and to dynamical heterogeneity.
In this section we propose a method for correcting the vari-
ance and the PDF of cI for the noise contribution, so as to
obtain the statistics of the fluctuations due to dynamical het-
erogeneity. Moreover, we show that in some instances the
full temporal evolution of cI may be corrected for the noise,
thus allowing g2�t ,��−1 to be determined, not only its vari-
ance and PDF.

A. Correction of the variance of cI

In the case of dynamically heterogeneous processes, the
parameters a1 ,… ,ak in the two-time correlation function
g2�a1�t� ,… ,ak�t� ;��−1, Eq. �3�, fluctuate with t. Therefore,
an extra term �g2

contributes to the variance of cI, in addition
to the noise term analyzed in the preceding section:

�cI

2 ��� = N−1

l=0

3

�lcI���l + �g2

2 ��� . �8�

In writing the expression above, we have assumed that no
correlation exists between the noise n�t ,�� due to the finite
number of pixels and the fluctuations of a1 ,… ,ak. Using Eq.
�4�, �g2

2 may be expressed as

�g2

2 ��� = 

i=1

k � �g2

�ai
�

ai=ai

2

�ai

2 + 

i�j

� �g2

�ai

�g2

�aj
�ai=ai

aj=aj

�ai,aj
. �9�

An example where �g2

2 assumes a particularly simple form is
given by the dynamics of a shaving cream foam, resulting
from intermittent bubble rearrangements, as measured in a
DWS experiment. We find that the fluctuations in the instan-
taneous decay rate ��t� of the correlation function are slow
compared to �̄, so that at any given time g2−1 is well ap-
proximated by a stretched exponential � exp�−���t���
�t��.
Small variations of 
�t� account for slight changes of the
decay rate on a time scale comparable to �̄−1. For example, if
the dynamics tend to slow down during the measurement of
g2−1, the initial decay of the correlation function will be
faster than its final decay. Thus, the shape of g2 will be more
stretched than the average one �
�
̄�. Conversely, 
�
̄ if
the dynamics accelerate during the measurement of g2−1.
By taking into account the fluctuations of both � and 
, Eq.
�9� yields, for the foam,

�g2

2 ��� = ��̄��2�2exp�− 2��̄��
̄��� 
̄

�̄
���2

+ �ln��̄���
�2�
�10�

with ��
2 = ��− �̄�2 and �


2 = �
− 
̄�2. Equation �10� extends a
similar expression given in Ref. �12�, where only the fluc-
tuations of � where taken into account. However, here we
still neglect possible correlations between � and 
 that could
be described by including the second term of the RHS of Eq.
�9�.

A direct test of Eq. �10� is not possible, since we experi-
mentally only access �cI

2 , not �g2

2 . Therefore, for the foam as
well as for the general case of temporally heterogeneous dy-
namics it is desirable to subtract the trivial contribution of
the measurement noise from the experimentally measured
�cI

2 , in order to obtain the physically relevant variance �g2

2 .
We have tested two different approaches. In the first method,
the linear dependence of �xi,xj

on cI shown in Fig. 2 is used
to derive formulas for these quantities that are independent
of the instantaneous dynamics and thus of the homogeneous
vs heterogeneous nature of the dynamics. These formulas are
presented in Appendix A. Unfortunately, although they pro-
vide separately fairly good estimates of the various terms

FIG. 5. Symbols: PDF of cI�t ,��, PcI
�cI�, for the same suspen-

sion of Brownian particles as for the preceding figures. From left to
right, the normalized delay � /�0 is 0.09, 0.87, and 8.7. In the three
panels the cI axis spans an interval of equal width �0.04�. The lines
are Gaussian distributions whose mean and standard deviations are
directly obtained from the cI time series, without any fitting
parameter.
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�xi,xj
, when combined using Eq. �5� to evaluate �n

2 uncertain-
ties add up leading to errors of the order of 30–40 %, as
tested on the data for the single scattering experiment on the
Brownian particles.

In the following, we describe in detail a second method
that has proven to be highly effective. The key point is to
recognize that, contrary to the noise term, the fluctuations of
g2�a1 ,… ,ak ;�� do not depend on the number of pixels over
which cI is averaged. This is because in the far field geom-
etry of the scattering experiments described in this work,
each CCD pixel collects light scattered by the whole illumi-
nated sample. Thus, any spatial or temporal heterogeneity of
the dynamics affects in the same way the signal measured by
each pixel. The different pixel-number dependence of the
noise and the fluctuations �first and second term in the RHS
of Eq. �8�, respectively� suggests a way to discriminate be-
tween these two contributions. We analyze the speckle im-
ages by processing different number of pixels, as described
for the Brownian suspension in Sec. III, and plot �cI

2 ��� as a
function of N−1, as shown in Fig. 6. As indicated by Eq. �8�,
the slope of a linear fit to the data yields 
l=0

3 �lcI���l, while
the intercept at N−1=0 is �g2

2 ���, the desired variance of the
correlation function due to dynamical heterogeneity. Thus,
the representation of Figs. 4 and 6 allows one to extrapolate
�cI

2 to N=�, where the measurement noise vanishes. As seen
in the inset of Fig. 6, for ��̄�1 or ��̄�1 the intercept of the
linear fit is very close to zero, indicating that at these delays
the fluctuations of cI are mainly determined by the measure-
ment noise. By contrast, at intermediate delays the intercept
clearly departs from zero, revealing the intermittent nature of
the dynamics of the foam.

In Fig. 7 we plot the � dependence of �cI

2 measured for the
foam, together with the noise contribution �n

2

=N−1
l=0
3 �lcI���l and that of the intrinsic fluctuations �g2

2 .
The noise contribution is extracted from the slope of �cI

2 vs
N−1, while the variance of the intrinsic fluctuations is given

by the N−1→0 limit of �cI

2 vs N−1. At all � we find �cI

2 =�n
2

+�g2

2 within 0.8 %, thus confirming that our analysis allows
us to correctly account for the two contributions to the fluc-
tuations of cI. Note that, while the shape of the time-
averaged correlation function g2−1 is almost the same for
the foam and the Brownian particles �a slightly stretched
exponential for the former and a simple exponential decay
for the latter�, the � dependence of the fluctuations of cI is
very different �compare the inset of Fig. 3 with Fig. 7�, thus
allowing temporally heterogeneous dynamics to be unam-
biguously detected. For the foam, correcting �cI

2 for the noise
contribution is especially important at time delays far from
the mean relaxation time, because the intrinsic fluctuations
die off for �→0, when virtually no rearrangement had a
chance to occur, and for �→�, when so many rearrangement
events occurred that the statistical fluctuations of their num-
ber are negligible. By contrast, we recall that �n

2 remains
finite at all �. Once corrected for the noise contribution,
�g2

2 ��� is very well described by Eq. �10�, as shown by the
line in Fig. 7. Interestingly, the fluctuations are maximal on
the time scale of the mean relaxation time, a general feature
found also in the dynamic susceptibility �4 measured in
simulations. Intuitively, this can be explained by recognizing
that the correlation function is most sensitive to a change of
the instantaneous relaxation time for ���0. Finally, note that
when comparing the absolute values of �g2

2 ��� and �4 one
should keep in mind that the latter is usually defined as the
variance of the correlation function multiplied by the number
M of particles in the system. Therefore, for homogeneous
dynamics �4
1, since the variance of the number fluctua-
tions is of order 1 /M, while �4�1 for heterogeneous dy-
namics. In the case of the foam shown in Fig. 7, taking M as
the number of bubbles in the scattering volume leads to
M�g2

2 ���
1000, indicating strongly heterogeneous dynam-
ics.

B. Correction of the PDF of cI

In the absence of intrinsic dynamical fluctuations, knowl-
edge of the average degree of correlation cI and of the noise
variance �n

2 is sufficient to fully determine the PDF of cI at

FIG. 6. �Color online� Variance of cI�t ,�� for a foam, as a func-
tion of the inverse number of pixels over which cI is averaged, for
three time delays �. The lines are linear fits to the data for N−1

�5.5�10−4. For ��̄�1, the intercept of the fit strongly departs
from zero, indicating temporarily heterogeneous dynamics as dis-
cussed in the text. Note that the fit yields a nonzero intercept also at
small delay, as shown in the inset that zooms into the small �cI

2 ,
large N region. Data were collected in the DWS transmission ge-
ometry for a duration Texp=160 s, 242 times longer than the relax-
ation time of cI , �̄

−1=0.33 s.

FIG. 7. �Color online� Variance of cI�t ,�� for a foam, as a func-
tion of �. Open squares: variance of the raw data �cI�; open circles:
noise contribution; solid triangles: �g2

2 ���, the contribution due to
the fluctuations of the number of rearrangement events per unit
time. The line is a fit to �g2

2 ��� using Eq. �10�. Data were collected
in the DWS transmission geometry.
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fixed lag, because cI is a Gaussian variable. Heterogeneous
dynamical processes, on the contrary, lead in general to non-
Gaussian distributions of cI�t ,�� �22,32,35�, whose shape de-
pends on both the dynamical process and the time delay �.
Because cI�t ,�� is the sum of two uncorrelated random vari-
ables, g2�a1�t� ,… ,ak�t� ;��−1 and the noise n�t ,��, the PDF
of cI is the convolution of the probability distribution of
g2�a1�t� ,… ,ak�t� ;��−1 with that of n�t ,�� �50�:

PcI
�cI� = Pg2−1�g2 − 1� � Pn�n� , �11�

where Px�x� denotes the PDF of x and �f � g��x�
=�dx�f�x��g�x−x�� is the convolution product. In order to
recover the physically relevant PDF of g2−1 from the mea-
sured PcI

�cI�, one may use standard Fourier transform tech-
niques to deconvolute the experimental data, using Pn�n� as
the response function �51�: Pg2−1=F−1�F�PcI

� /F�Pn��, where
F and F−1 indicate direct and inverse Fourier transform, re-
spectively. Unfortunately, this procedure is very sensitive to
noise in the data and leads typically to unstable solutions
exhibiting wide oscillations. Instead, we use a technique
similar to the indirect Fourier transformation �IFT� method
used to process static scattering data. Details on the IFT
method can be found in Refs. �52,53�, here we simply de-
scribe the main steps of our implementation. We first assume
that the unknown PDF of g2−1 at fixed lag � may be written
as the linear superposition of a set of suitable functions 
k:

Pg2−1 = 

k=1

M


k
k�g2 − 1� . �12�

It is convenient to choose 
k�x�=rect�x−xk ;2��, where

rect�x − xk;2�� = �1 : �x − xk� � � ,

0 : elsewhere
� �13�

is a square pulse of width 2� centered on xk. 2� is taken to
be the width of the bins used to calculate the PDF of cI, i.e.,
the separation between the cI coordinates of the M experi-
mental PcI

data. Because the convolution is a linear transfor-
mation, Eqs. �11� and �12� yield the following guess for the
PDF of cI:

Pguess�cI� = 

k=1

M


krect�cI − cI,k;2�� � Pn�cI�

= 

i=k

M

k

2
�erf�x+� − erf�x−�� �14�

with

x± =
1

�2�n

�cI − cI,k ± �� . �15�

Here erf�x�=2�−1/2�0
xexp�−u2�du is the error function �50�

and cI,k is the center of the kth bin used to calculate the
experimental PDF. In writing the last line of Eq. �14� we
have used Pn�cI�= �2��n

2�−1/2exp�−cI
2 /2�n

2� and calculated
explicitly the convolution product. We note that the width of
the rect functions is typically much smaller than that of the

Gaussian noise Pn, so that the difference of the erf functions
in square brackets is very close to a Gaussian. We stress that
the only unknowns in Eqs. �14� and �15� are the coefficients

k, since the variance of the noise �n

2 can be obtained di-
rectly from the experimental cI using the extrapolation
scheme described in the preceding subsection.

In principle, the coefficients 
k can be determined by fit-
ting Eq. �14� to the experimentally measured PDF of cI.
Once the 
k’s are known, the desired PDF of g2−1 can be
obtained by using Eq. �12�. In practice, two issues must be
addressed when determining the set of 
k. First, noise in the
experimental PcI

can make the fitting procedure unstable. It
is therefore convenient to smooth the experimental PcI

before
fitting it by Eq. �14�. To this end, PcI

is approximated by a
smooth curve Psm obtained by fitting the data by a suitable
function. We find that in most cases

Psm�cI� = Ae�1�cI−c0�+�2�cI − c0�2−�3exp��4�cI−c0�� �16�

fits the whole experimental PDF well, although fitting PcI
piecewise may be sometimes necessary. Note that the Gum-
bell PDF corresponds to the case �1=�4=��0,�2=0, and
�3=1 �38�. The coefficients 
k are then found by fitting
Pguess�cI� to Psm, rather than directly to PcI

. Second, the PDF
of g2−1 determined by inserting the 
k’s thus obtained in
Eq. �14� often exhibits large oscillations. This is because the
erf functions in Eq. �14� do not form an orthogonal basis, as
discussed in Ref. �53�. This problem can be solved by adding
a stabilization condition when fitting Psm by Pguess. We fol-
low Ref. �53� and determine the set of 
k by minimizing the
following expression:



l=1

L

�Psm�cI,l� − Pguess�cI,l��2 + � 

k=1

M−1

�
k+1 − 
k�2. �17�

The first term in the above expression corresponds to the
usual sum of squared deviations between the fitting function
�Pguess� and the data �Psm�. The second term assigns a cost to
any large variation between successive 
k and thus tends to
suppress all fast oscillation of Pguess. The relative weight of
the two terms is controlled by the Lagrange multiplier �,
whose optimum value is determined as described in Ref.
�53�.

The top panel of Fig. 8 shows the PDF of cI measured in
the DWS TRC experiment on foam, for �=0.02 s �open
circles�. The solid line is the smoothed PDF, Psm, obtained
by fitting the data to Eq. �16�. The dotted line is the Gaussian
PDF of the noise Pn whose width is �n �for display purposes,
Pn has been centered on cI, rather than on 0�. In the bottom
panel, the thick line is the PDF corrected for the noise con-
tribution Pg2−1. Note that the right wing of the corrected PDF
drops much more abruptly than that of the raw data �for
comparison, the uncorrected and the smoothed PDF are also
plotted in the bottom panel�. The left wing, on the contrary,
is almost unaffected by the correction. This is a consequence
of the nearly exponential behavior of the left wing: indeed, it
can be shown that the convolution of an exponential function
with a Gaussian is again exponential, with the same growth
rate. We test how close the raw data and the corrected PDF
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are to a Gumbel distribution by fitting the data to the expres-
sion of Eq. �16�, with �2=0 and �1=�3�4, corresponding to a
generalized Gumbel PDF �38�. For the raw data, we find
�3=1.04, very close to �3=1, the value for a Gumbel PDF.
By contrast, for the corrected data �3=0.42, showing that the
right wing of the corrected PDF strongly departs from both a
Gumbel distribution and the “universal” PDF of Ref. �42�,
for which �3=� /2�1.57. A more detailed investigation of
the shape of the PDF of cI for various delays � and different
systems will be presented elsewhere: here we just stress the
importance of the noise correction in view of any quantita-
tive comparison.

C. Direct correction of cI„t ,�… for �™�0

The methods developed in Secs. IV A and IV B allow one
to calculate the variance and the PDF of g2−1, but not to
correct directly the time-dependent degree of correlation
cI�t ,��. Here we show that such a correction is possible, i.e.,
that the noise-free g2�t ,��−1 at fixed � may be retrieved as a
function of t, provided that the following assumptions are
fullfilled: �i� the dynamics is homogeneous on a time scale
comparable to the CCD exposure time and �ii� ���0, where
�0 is the average relaxation time of g2−1.

We first observe that cI�t ,�=0� measures the so-called
contrast of the speckle pattern, or coherence factor �. The
latter is determined only by the speckle-to-pixel size ratio,
which is a time-independent quantity, and by the blurring due
to the fluctuations of the speckle during the time the CCD
chip is exposed �14�. If �i� is fulfilled, the amount of blurring
is constant over time and hence cI�t ,0� fluctuates only be-

cause of the noise �54�. Therefore, n�t ,0� can be directly
obtained from the experimentally measured cI�t ,0�:

n�t,0� = cI�t,0� − cI�t,0� . �18�

If in addition �ii� is also fulfilled, n�t ,���n�t ,0�, because the
noise evolves on the same time scale as the speckle pattern,
�0. Indeed, by analyzing TRC data for Brownian particles,
we have shown in Ref. �35� that the noise is highly corre-
lated for ���0. This suggests that cI�t ,�� may be directly
corrected according to g2�t ,��−1=cI�t ,��−n�t ,���cI�t ,��
−n�t ,0�, with n�t ,0� obtained via Eq. �18�. This approxima-
tion may be further refined by taking n�t ,����n�t ,0�+n�t
+� ,0�� /2 rather than n�t ,���n�t ,0� and by scaling this es-
timate of the noise so that its standard deviation matches the
actual standard deviation of n�t ,��:

g2�t,�� − 1 = cI�t,�� − ��n���/�n�0���n�t,0� + n�t + �,0��/2�n.

�19�

Here, the standard deviation of the noise of cI�t ,�� ,�n���, is
obtained by applying the extrapolation scheme described in
Sec. IV A, while n�t ,0� and n�t+� ,0� are given by Eq. �18�
and �n�0� is directly calculated from n�t ,0�.

We test Eq. �19� on TRC data taken for the dilute suspen-
sion of Brownian particles, for which the fluctuations
of cI are due only to the measurement noise: cI�t ,��
=n�t ,��+cI�t ,��. The top panel of Fig. 9 shows a portion of
cI�t ,0� and cI�t ,�1�, with �1=0.5 s��0=5.8 s. Clearly, the
two traces are highly correlated, as expected if n�t ,�1�

FIG. 8. �Color online� Top panel: PDF of cI�t ,�� for a foam, for
�=0.2 sec �open circles�; data were in the DWS transmission ge-
ometry. The continuous line is the smoothed distribution Psm ob-
tained from a fit to Eq. �16�. The dotted line is the Gaussian PDF of
the noise. Bottom panel: the corrected distribution Pg2−1 �thick
line�, together with the raw data and the smoothed PDF �same sym-
bols as in the top panel�. Note the much steeper decay of the right
wing of the corrected PDF. The inset shows the data around the
peak in a linear axis graph.

FIG. 9. �Color online� Top panel: cI�t ,0� and cI�t ,�1=0.5 sec�
measured for a diluted suspension of Brownian particles, for which
the relaxation time of g2−1 is �0=5.8. Data are plotted over a short
time window to show the strong correlation between the two traces.
The dashed blue line is g2�t ,�1�−1 obtained by correcting cI�t ,�1�
for the noise contribution according to Eq. �19�: the fluctuations due
to the noise are almost completely removed. Bottom panel: PDF of
cI�t ,�1� �open squares� and of g2�t ,�1�−1 �solid circles�, obtained
over the full duration of the experiment �Texp=10800 s�. The PDFs
are labeled by their variance.
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�n�t ,0�. The dotted line is g2�t ,�1�−1 calculated according
to Eq. �19�. Notice that g2�t ,�1�−1 is almost constant, as
expected for temporally homogeneous dynamics, thus dem-
onstrating the effectiveness of the correction. The bottom
panel shows the PDF of cI�t ,�1� and g2�t ,�1�−1 calculated
over the whole duration of the experiment. By correcting
cI�t ,�1� for the noise, its variance is reduced by almost a
factor of 100 �from 3.0�10−5 to 3.9�10−7�. The residual
fluctuations of g2�t ,�1� are most likely due to the noise �p�t�
discussed in reference to Eq. �2�, whose variance we estimate
to be of the order of 3.9�10−7 �55�.

D. Influence of the duration of the experiment

The analysis of the fluctuations of cI presented in Secs.
IV A and IV B was developed under the assumption that the
dynamics be stationary, so that data could be collected over a
period Texp, much longer than the average relaxation time of
the intensity correlation function �0. Dynamical heterogene-
ity, however, appear to be more prominent for systems close
to jamming or quenched in an out-of-equilibrium state. For
these systems, meeting the condition Texp��0 is often im-
possible, since the sample may be aging, leading to nonsta-
tionary dynamics, or because, even if the dynamics is sta-
tionary, the relaxation time may be as large as several tens of
hours. It is therefore important to address the issue of the
influence of the experiment duration on the measured �cI

.
Let us first consider the simpler case of homogeneous

dynamics. We divide the time series of cI�t ,�� obtained for
the Brownian particles into non-overlapping segments of du-
ration T�Texp. We denote by �cI,T

2 ��� the mean value of the
variance of cI�t ,�� calculated for each segment of duration T,
and plot in Fig. 10 �cI,T

2 as a function of T normalized by the
relaxation time �0 �the data refer to �=�0, a similar behavior
is observed for all ��. For T /�0�1,�cI,T

2 is independent of T,
because in this regime the experiment duration is long
enough for the system �and thus the speckle pattern� to
sample a sufficiently large number of different configura-
tions. Consequently, �cI,T

2 saturates to the maximum value
given by Eq. �7�, which is dictated only by � and the
number of CCD pixels. Note that for T /�0 close to one
�T /�0=0.87� ,�cI,T

2 is still significantly lower than its satura-

tion value �about 35%�, while it increases to 95% for
T /�0�20 and saturates only for T /�0�50. As T /�0 de-
creases below 1, the amplitude of the fluctuations is signifi-
cantly reduced when decreasing T, since the system is not
given enough time to explore significantly different configu-
rations. For T /�0�1, the speckle pattern is essentially frozen
on the time scale of the experiment duration: the fluctuations
of cI due to the evolution of the speckle pattern are thus
expected to be almost completely suppressed. For the data
shown in Fig. 10, this regime is not quite reached, since the
CCD acquisition rate could not be fast enough to allow for
several images to be acquired on a time scale much smaller
than �0 �the smallest lag between images is 0.5 s=�0 /11.6�.
In the T /�0→0 regime, the main contribution to �cI,T

2 should
come from the CCD electronic noise �p�t�, whose variance,
��

2, is shown as a line in Fig. 10. The data shown in this
figure clearly demonstrate that care must be taken when
comparing the fluctuations measured in experiments whose
relative duration Texp/�0 is different.

For heterogeneous dynamics, we expect the behavior of
�cI,T

2 to be qualitatively similar, although the situation will be
in general more complicated. In fact, in this case the relevant
time scales to which Texp has to be compared are not only the
mean relaxation time of g2−1�0, but also the characteristic
time of the “intrinsic” fluctuations of the dynamics, de-
scribed by the variation of the parameters a1�t� ,… ,ak�t� in
Eq. �3�. As an example, for the foam data shown in Figs. 6
and 7 �0=��t�−1=0.32 s, while the temporal fluctuations of
the decay rate occur on a much longer time scale
�fluct�7 s �36� �see also Fig. 13 below and the associated
discussion�. Hence, in order to measure precisely the fluctua-
tions the experiment should last more than about 20�fluct,
rather than just 20�0. For other jammed materials, on the
contrary, the intrinsic fluctuations may be much faster than

FIG. 10. Variance of cI�t ,�=�0� calculated over a duration T as
a function of T normalized by the mean relaxation time �0, for a
suspension of Brownian particles. A similar behavior is observed
for all �. The line is the contribution to the variance of cI�t ,�=�0� of
the CCD electronic noise �see the text for more details�.

FIG. 11. �Color online� �a� Time variation of cI for a multila-
mellar vesicle gel, for �=100 s. The mean relaxation time is
�0=5050 s, the duration of the experiment is T=80 000
s=15.8��0. �a� Raw data; �b� the same data after applying the
correction Eq. �19�, �c�: PDF of the traces shown in �a� �dotted line�
and �b� �solid line�.
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�0, as demonstrated by the sudden sharp drops of cI resulting
from intermittent rearrangements in a closely packed multi-
lamellar vesicle system �56�, shown in Fig. 11�a�. In this
case, at least for the smallest time lags, the analysis proposed
in Sec. IV C allows the slow fluctuations due to the measure-
ment noise to be suppressed, while preserving the fast drops
of cI that contain the physically relevant information on the
dynamical intermittency, as seen in Fig. 11�b�. Note the dra-
matic change of the shape of the PDF of cI before and after
correcting the data, as shown in Fig. 11�c�.

V. THE SECOND CORRELATION

In the previous sections, the fluctuations of cI were ana-
lyzed in terms of their variance and PDF. Additional infor-
mation on the system dynamics can be obtained by studying
not only the probability distribution of the fluctuations and
its second moment, but also the way these fluctuations occur
in time. We characterize the temporal properties of cI at a
fixed lag � by introducing the time autocorrelation function
of cI�t ,��:

CcI
��t,�� =

cI�t,��cI�t + �t,�� − cI
2

cI�t,��2 − cI
2 . �20�

With this choice of the normalization, CcI
�0,��=1, and

CcI
��t ,��=0 if cI�t ,�� and cI�t+�t ,�� are uncorrelated �e.g.,

for �t→��. Because CcI
is the correlation function of a

time-varying quantity cI�t ,�� which is obtained itself by cor-
relating the scattered intensity, we shall term it the “second
correlation,” in analogy with the “second spectrum” first in-
troduced in the context of spin glasses �46�. The second
spectrum describes in the frequency domain the fluctuations
around the mean value of the spectrum of a time-dependent
quantity. Similarly, the second correlation describes—in the
time domain—the fluctuations of the degree of correlation
between the time-dependent system configurations. The sec-
ond correlation is also similar to the fourth order intensity
correlation function introduced in Refs. �43,44�, gT

�4����
= I�0�I�T�I���I��+T� / Ī4. Note, however, that gT

�4���� com-
pares the scattered intensity, and thus the sample configura-
tion, at four successive times, while the second correlation
compares the change in sample configuration occurring over
two time intervals of duration � separated by a time �t.

As for the case of the PDF discussed in Sec. IV, the sec-
ond correlation contains contributions from both the physi-
cally relevant intrinsic fluctuations of g2�a1�t� ,… ,ak�t� ;��
−1 and the noise n�t ,��. We focus on stationary dynamics
measured over a period Texp��0 and assume that the fluc-
tuations of g2�a1�t� ,… ,ak�t� ;��−1 and n�t ,�� are uncorre-
lated: g2n=g2n̄ for all �t. Under these assumptions and by
using Eq. �3�, Eq. �20� yields

CcI
��t,�� =

�g2

2 ���Cg2
��t,�� + �n

2���Cn��t,��

�g2

2 ��� + �n
2���

, �21�

where Cg2
and Cn are the correlation functions of the fluc-

tuations of g2 and n, respectively, defined similarly to Eq.

�20�. Experiments on Brownian particles �homogeneous dy-
namics� show that Cn��t ,���cI��t� /� for all � �35�. Indeed,
Cn is expected to be proportional to cI because the � depen-
dence of the noise time autocorrelation stems from the same
physical mechanism leading to the decay of the intensity
correlation function, i.e., the renewal of the speckle pattern
over time discussed in Sec. III. In order to extract the desired
second correlation of g2 from the noise-affected CcI

, we use
a method similar to the extrapolation technique adopted for
the calculation of the variance of g2. At �t and � fixed, CcI
depends on the number N of processed pixels through the �n

2

term in Eq. �21� We omit for simplicity the explicit depen-
dence on �t and � and insert Eq. �7� into Eq. �21�:

FIG. 12. �Color online� Correction method for Cg2
. Symbols: the

second correlation CcI
as a function of the inverse number of pro-

cessed pixels, for various �t �shown by the labels, in s� and for �
=1.6 s �only the data for the largest N are shown�. The data are
obtained from a DWS measurement on a foam. The lines are fits to
the data using Eq. �22�; the full range of the fit is shown in the
figure. The outcome of the fit are the values of Cg2

��t ,�� and
Cn��t ,�� shown with the same symbols in Fig. 13.

FIG. 13. �Color online� Time autocorrelation function of the
fluctuations of g2 for a foam, obtained from the second correlation
CcI

��t ,�� by applying the correcting scheme described in the text.
Small open circles: the noise-free Cg2−1; solid line: the experimen-
tally measured CcI

; dashed line: the noise contribution, Cn. The
large symbols are the values of Cg2−1 obtained from the fit to the
corresponding data shown in Fig. 12. Note the peaks of Cg2−1 at
�t�7 s, and �t�14 s, suggesting pseudoperiodic rearrangement
events, as discussed in the text.
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CcI
�N� =

�g2

2 Cg2
+ CnN−1


l=0

3

�lcI
l

�g2

2 + N−1

l=0

3

�lcI
l

�22�

The LHS of this expression can be calculated by processing
ROIs of the speckle images of different sizes, as explained in
Secs. III and IV, and plotted as a function of N−1, as shown in
Fig. 12 for a foam. The RHS of Eq. �22� is then used as a
fitting function for CcI

�N�, where the fitting parameters are
the desired Cg2

and Cn, while �g2

2 and 
l=0
3 �lcI

l are obtained
independently from the correction of the variance of cI, as
explained in Sec. IV A.

By repeating this procedure for all �t and � of interest, the
full second correlation can be corrected for the noise contri-
bution. We show in Fig. 13 Cg2

��t ,�� for a foam �open
circles�, together with the uncorrected data �CcI

, solid line�
and the noise contribution �Cn, dashed line�. Remarkably, a
peak is visible in Cg2

, at �t=�t*�7 s. Note that the peak is
not present in Cn, whose only relevant time scale is that of
the relaxation of cI , �̄

−1=0.32 s. Therefore, the peak in Cg2
must be associated with the intrinsic fluctuations of the dy-
namics due to the intermittent bubble rearrangements. In-
deed, the peak indicates that the fluctuations of the instanta-
neous decay rate ��t� are pseudoperiodic on a time scale of
the order of �t*. We are currently investigating the origin of
this feature.

VI. POSSIBLE ATRIFACTS

In a TRC measurement, the focus is on the fluctuations of
the degree of correlation, rather than on its mean value. As a
consequence, TRC measurements are very sensitive to vari-

ous sources of spurious fluctuations, whose effects are usu-
ally less prominent or even negligible in traditional dynamic
light scattering experiments, since they tend to average out.
An example is provided in the top panel of Fig. 14, which
shows cI measured for the speckle pattern generated in the
transmission geometry by a ground glass, a scatterer whose
dynamics are completely frozen in. In this case, we would
expect cI to fluctuate slightly only because of the electronic
noise �p�t� discussed in Sec. II. Surprisingly, sharp drops of
the degree of correlation are clearly visible. Because the
drops are rare, they do not affect significantly cI; however,
they do change significantly the PDF of cI and the second
correlation. Indeed, one would mistakenly take the dynamics
to be intermittent, if the sample was not known. The origin
of this artifact is the laser beam pointing instability. Beam
pointing instability is the characteristic noise of lasers that
results in small fluctuations of the propagation direction of
the output beam. Since the speckle pattern is centered around
the propagation direction, any change of the incoming beam
direction entails a rigid shift of the speckle image with re-
spect to the CCD detector. Thus, the intensity at each pixel
slightly changes, leading to a drop of cI. To demonstrate that
this mechanism is indeed responsible for the sharp drops of
cI observed in Fig. 14, we show in the bottom panel the
corresponding shift �r�t ,�� between pairs of images taken at
time t and t+�, measured by particle imaging velocimetry
�PIV� �57�. This method is based on spatial cross-correlation
techniques and allows the rigid motion between two images
to be quantified with subpixel resolution �our adaption of
PIV to speckle imaging will be described elsewhere�. A com-
parison between the two panels of Fig. 14 clearly shows that
the anomalously large drops of cI are due to larger-than-
average rigid shifts of the speckle images. Note that shifts as
small as a fraction of pixel, corresponding to a few microns,
have a measurable impact on cI.

This example shows how sensitive to instabilities TRC is.
Therefore, care must be taken in order to minimize possible
instabilities and to identify any spurious fluctuations of cI.
Moreover, attempts should be done to correct cI for artifacts.
In our experience, the most common artifact encountered in
TRC experiments is similar to that exemplified by Fig. 14:
fluctuations or sharp drops of cI due to a rigid shift of the
speckle pattern, rather than to the characteristic “boiling” or
flickering of the speckle images associated with the evolu-
tion of the sample configuration. In addition to beam point-
ing instability, temperature variations are often to blame for
spurious features in the temporal evolution of cI.

Temperature variations may change the direction of
propagation of light because of refractive effects, since the
refractive index nD varies with temperature T. As an ex-
ample, let us consider a typical small-angle single scattering
measurement on an aqueous sample contained in a rectangu-
lar cell, whose entrance and exit walls are perpendicular to
the incoming beam. Light scattered at an angle 	s equal to,
e.g., 15 ° is refracted at the water-to-air interface and exits at
an angle given by Snell’s law: 	air=arcsin �nDsin 	s� �58�. A
temperature fluctuation �T induces a variation �	air given by

FIG. 14. Top panel: cI�t ,�� measured for a static scatterer, a
ground glass, for �=5 s. Note the sharp drops of the degree of
correlation that greatly exceed the noise of the data. Bottom panel:
rigid displacement between the pair of speckle images used to cal-
culate cI�t ,�� above, measured by PIV. The sharp drops of cI are
artifacts due to larger-than-average rigid shifts of the speckle
images.
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�	air =
�	air

�nD

�nD

�T
�T =

sin 	s � nD/�T

�1 − sin2	snD
2

�T � 2.8 � 10−5 rad,

�23�

where we have used nD=1.33, �nD/�T�10−4 K−1 for water
and we have taken �T=1 K. In a typical small angle setup
the sample-to-CCD distance is at least 10 cm and the pixel
size is about 10 
m, resulting in a shift of the speckle asso-
ciated to the direction 	s of the order of 0.28 pixels, suffi-
cient to significantly reduce cI. Thus temperature fluctuations
of the order of 1 K may lead to measurable spurious fluctua-
tions of cI because of refractive effects.

In most single scattering wide-angle apparatuses the
sample cell is cylindrical and both the incoming beam and
the scattered light cross all optical interfaces at normal inci-
dence, so that refractive effects are avoided. Nevertheless,
any change of the refractive index due to temperature varia-
tions would still result in a change of the speckle pattern.
This is because each speckle is associated to a well defined
value of the scattering vector qs. If nD changes, the scattering
angle 	s corresponding to qs is modified, since
	s=2 arcsin��0qs /4�nD�, where �0 is the laser in-vacuo
wavelength. Accordingly, the speckle pattern is contracted or
dilated around the q=0 direction. This is the same effect as
the radial shift of the speckle pattern when changing the
wavelength of the incident radiation, which was studied in
the 1970 �59�. When only a limited portion of the speckle
pattern corresponding to a small solid angle is imaged on the
CCD detector �as it is the case, e.g., for the single scattering
experiments at 	=45° reported in this paper�, such a global
contraction or dilation results, locally, in a rigid shift of the
speckles. The change �	s of 	s in response to a temperature
fluctuation �T is

�	s =
�	s

�nD

�nD

�T
�T

=
− 2�0qs � nD/�T

nD
�16�2nD

2 + �0
2qs

2
�T

� − 6.2 � 10−5 rad, �24�

where we have used nD=1.33, �0=0.535 
m,
qs=12.44 
m−1�	s=45° �, �nD /�T�10−4 K−1, and �T=1 K.
Taking the sample-to-CCD distance to be 10 cm, we find that
a fluctuation �T=1 K would result in a shift of the speckle
pattern of 6.2 
m, comparable to the pixel size. This would
lead to a catastrophic drop of cI, since the speckle size is
typically of the order of the pixel size. Indeed, even a fluc-
tuation ten times smaller, �T=0.1 K, would have a measur-
able impact on cI. Similar arguments apply also to multiple
scattering experiments. Note that DWS experiments are
more sensitive to variations of nD than single scattering mea-
surements are, because minute changes of q at each scatter-
ing event add up along the photon path, eventually resulting
in a significant change of the phase of scattered photons.

Various strategies are possible to avoid the artifacts dis-
cussed above, or at least to mitigate their effects on TRC
data. The impact of beam pointing instability can be mini-
mized by reducing as much as possible the light path be-

tween the laser and the sample, or by delivering the beam via
fiber optics. In the latter case, beam pointing instability re-
sults in fluctuations of the laser-to-fiber coupling efficiency
and thus of the incident intensity, Iin. Because cI is normal-
ized with respect to the instantaneous pixel-averaged inten-
sity �see Eq. �1��, fluctuations of Iin have little if any effect.
Temperature should be controlled at least to within 0.1 K and
the sample or sample holder temperature should be moni-
tored, so that any suspect feature in cI could be compared to
the temperature record. A PIV analysis similar to that pre-
sented in Fig. 14 is a useful test to check whether a spurious
rigid shift of the speckle pattern is at the origin of large drops
of cI.

The input from PIV measurements may also be used to
correct for the effect of a rigid shift �r of the speckle pattern.
This could be achieved by constructing a corrected speckle
image, shifting back by −�r the second image of the pair
used to compute cI. The corrected image would then be used
to calculate cI. Standard image-processing techniques �60�
can be used to obtain subpixel shifts. Alternatively, one may
exploit the fact that in the presence of both a rigid shift
�r and a genuine evolution of the speckle pattern, the
measured degree of correlation cI,meas factorizes as
cI,meas�t ,��=cI�t ,���g2,sp��r�−1� �a proof is given in the Ap-
pendix of Ref. �17��. Here g2,sp��r�−1 is the normalized
spatial autocorrelation function of the speckle image and
cI�t ,�� is the degree of correlation that would be measured in
the absence of any shift. We are currently exploring both
approaches.

We conclude this section by reporting a spurious feature
due to the electronic noise �p, which may affect the second
correlation CcI

��t ,�� measured for time lags � much smaller
than the typical relaxation time. On those short time scales,
the speckle pattern is essentially frozen; therefore, we shall
use as an example the series of images of a perfectly frozen
speckle pattern obtained as described at the end of Sec. IV C.
We process the data as usual and calculate the variance of cI.
For all lags ��0 the same value is obtained, which is taken
as an estimate of ��

2. This has the advantage of excluding
other artifacts, such as a possible rigid shift of the speckle
pattern. As shown in Fig. 15, the second correlation exhibits
spikes at �t=�, emerging from a baseline close to zero. This
is a spurious effect due to the fact that the electronic noise �p
is delta correlated in time. Therefore, �p contributes an extra

FIG. 15. �Color online� Second correlation measured for a per-
fectly frozen speckle pattern. The curves are labeled by �, in s. Note
the spurious peaks at �t=�, due to the CCD dark noise, as dis-
cussed in the text.
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term to cI�t ,��cI�t+�t ,�� whenever two out of the four in-
tensity terms involved in this expression are measured at the
same time, as for �t=�. A rigorous calculation can be found
in Ref. �36�, showing that the height of the spurious peaks is
0.5, in good agreement with Fig. 15. The spikes of the sec-
ond correlation shown in a figure of a �withdrawn� preprint
authored by some of us �61� are most likely due to this ef-
fect.

VII. CONCLUSIONS

We have shown that TRC allows heterogeneous dynamics
to be unambiguously discriminated from homogeneous dy-
namics. In order to quantify dynamical heterogeneity, three
statistical objects are particularly insightful: the variance of
cI, which corresponds to the dynamical susceptibility �4, the
PDF of the degree of correlation, and its time autocorrelation
function—the second correlation. Statistical noise due to the
finite number of pixels over which cI is averaged can con-
tribute significantly to the fluctuations of the degree of cor-
relation. Thanks to the correction scheme described in this
paper, the variance, PDF, and time autocorrelation of cI can
be corrected for this contribution, thus making quantitative
measurements of heterogeneous dynamics accessible to scat-
tering techniques. These corrections are particularly impor-
tant when the intrinsic fluctuations are comparable to or even
smaller than the noise. This may occur because dynamic het-
erogeneity is mild, e.g., in moderately concentrated suspen-
sions of colloids �62�, or because the number of available
pixels is reduced, e.g., in a small angle light scattering or
XPCS setup, where the lowest accessible q vectors corre-
spond to small rings centered around the transmitted beam
and containing a limited number of pixels �21�. Corrections
are also important when comparing TRC data obtained from
different apparatuses, for which both the speckle size and the
number of pixels may differ, or when analyzing small angle
data, since the number of pixels in the rings associated to
different q vectors varies with q.

In addition to providing a quantitative description of dy-
namical fluctuations for systems in a stationary or quasista-
tionary state, TRC is a useful tool for studying rapidly evolv-
ing dynamics, e.g., during gelation �36�, as well as the
response to an instantaneous perturbation, e.g., an applied
shear �63�. Because in both cases the dynamics may evolve
on time scales comparable to or even shorter than the relax-
ation time of g2, a representation of the time evolution of cI
is more appropriate and insightful than that of the two-time
correlation function. Limitations to the applicability of TRC
are mainly due to the CCD acquisition rate, which typically
does not exceed a few tens or hundreds of Hz. An additional
experimental constraint is the need to store the acquired im-
ages on the hard disk of a PC and to process them at the end
of the experiment: data sets up to several Gb are not infre-
quent.

Other techniques have been proposed in the last few years
to study dynamical heterogeneity. New light scattering meth-
ods include speckle visibility spectroscopy �SVS� �64,65�
and the measurement of higher order intensity correlation
functions �43,44�. In a SVS experiment, one measures

cI�t ,�=0�, that is the instantaneous contrast—or
visibility—of the speckle pattern �Ip

2�t��p / �Ip�t��p
2 −1. The

contrast depends on the evolution of the speckle pattern dur-
ing the exposure �integration� time of the CCD. A significant
evolution on this time scale leads to a blurred speckle pattern
image, and thus to a reduced contrast. Fluctuations of the
contrast can therefore be related to dynamical fluctuations on
the time scale of the exposure time. Because the latter is
typically much shorter than the time between successive
CCD acquisitions, SVS and TRC provide complementary in-
formation, on fast and slow dynamics, respectively. Note that
SVS data can be obtained on the fly, with no need to store
images, since only one image at a time has to be processed.
Higher order intensity correlation functions �43,44�, calcu-
lated by a dedicated hardware, allow one to discriminate be-
tween homogeneous and intermittent dynamics. The time
scales that are probed and the required measuring time are
similar to those in a traditional light scattering experiment:
dynamics as fast as a fraction of 
sec can be measured, but
the largest available delay is limited to a few tens of seconds
and the experiment duration has to be at least 1000 times
longer than the largest relaxation time of the system. These
constraints limit the applicability to glassy soft matter.

Video and confocal scanning microscopy have been used
to study dynamical heterogeneity in concentrated colloidal
suspensions �66�. Microscopy and TRC are complementary
techniques: while the former provides unsurpassed details on
the motion at a single particle level, scattering data typically
benefit from better statistics. Additionally, scattering experi-
ments usually require smaller particles than microscopy, a
plus when dealing with very slow dynamics and when sedi-
mentation effects should be minimized. Other techniques that
can probe heterogeneous behavior in soft glasses are dielec-
tric �67� and rheological �68� measurements whose sensitiv-
ity is pushed to the limits set by thermal fluctuations. The
outcome of these experiments shares intriguing similarities
with TRC data, such as the non-Gaussian distribution of volt-
age fluctuations in dielectric measurements on suspensions
of Laponite �67�. Whether these similarities are coincidental
or stem from a common physical origin remains an open
question.

In the future, a deeper understanding of both spontaneous
dynamical fluctuations and the response to external perturba-
tions in soft glassy systems will likely require the combina-
tion of different techniques, possibly applied simultaneously
on the same sample. We believe that TRC can play an im-
portant role in this endeavor, thanks to its ability to detect
instantaneous variations in the dynamics.
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APPENDIX A: CALCULATION OF THE VARIANCE AND
COVARIANCE TERMS IN EQ. (6)

In this section we provide additional details on the two
approaches to the calculation of the variance of the measure-
ment noise mentioned in Sec. III. We first show that the
variance and covariance terms in Eq. �6� may be expressed in
a way that is independent of the homogeneous vs heteroge-
neous nature of the dynamics, and then explicitly demon-
strate the N−1 scaling of �n

2 that was used in the correction
scheme presented in this paper.

The quantities of interest are the variance of the pixel-
averaged intensity �I

2, the covatiance between I and J�I,J���,
the variance of the un-normalized intensity correlation func-
tion �G2

2 ���, and the covariance between G2 and I�G2,I���. We
recall that I�t�= �Ip�t��p ,J�t�= �Ip�t+���p and drop in the fol-
lowing the explicit dependence on t in the notation of all
time-varying variables. We assume the dynamics to be sta-
tionary and the experiment duration much longer than the
average relaxation time of cI. We start by noting that �I

2

quantifies the fluctuations of the instantaneous pixel-
averaged intensity. Therefore, �I

2 is independent of the nature
of the dynamics: indeed, any dynamical process that fully
renews the speckle pattern will allow all possible values of I
to be sampled over time and thus will lead to the same �I

2. In
contrast, �I,J���, �G2

2 ���, and �G2,I��� depend on the way the
correlation between distinct speckle patterns fluctuates with
time and therefore contain contributions due both to the mea-
surement noise and to the intrinsic fluctuations of the dynam-
ics. However, note that the �→0 and �→� limits of these
quantities are insensitive to the dynamics, because they in-
volve either instantaneous properties of the speckle pattern
�for �=0�, or quantities related to pairs of speckle images
totally uncorrelated �for �→��. This observation, together
with the linear dependence of �I,J���, �G2

2 ���, and �G2,I��� on
cI in the absence of dynamical heterogeneity shown in Fig. 2,
suggests the following form for the contribution of the mea-
surement noise to the covariance and variance terms:

�I,J��� = �I,J��� +
cI���

�
��I,J�0� − �I,J���� ,

�G2

2 ��� = �G2

2 ��� +
cI���

�
��G2

2 �0� − �G2

2 �����G2,I��� = �G2,I���

+
cI���

�
��G2,I�0� − �G2,I���� . �A1�

All coefficients in the RHS of the above equations are not

affected by dynamical heterogeneity. Table I summarizes
their values in terms of quantities that can be directly ob-
tained from the speckle images, regardless of the nature of
the dynamics.

As mentioned in Sec. IV, estimates of �n
2 obtained by

using Eq. �A1� and Table I are typically affected by a sig-
nificant error. In this paper we have proposed a more robust
correction method, based on the N−1 scaling of the measure-
ment noise variance, which we demonstrate here. For the
sake of simplicity, we assume in the following that there is
no correlation between the instantaneous value of the inten-
sity at distinct pixels, i.e., IpIq= Ip Iq for p�q. Physically,
this corresponds to a speckle size much smaller than the
pixel size; this requirement considerably simplifies the cal-
culations, but it can be relaxed without changing the N−1

scaling, as we shall show at the end of this Appendix.
For experiments whose duration is much longer than the

relaxation time of cI, the intensity at any given pixel fully
fluctuates many times and its probability distribution over
time is the same as the instantaneous PDF of Ip calculated
over all N pixels; therefore averages over time and over pix-
els can be swapped. We take advantage of this property and
of the statistical independence between Ip and Iq to write

�I
2 =

1

N2

p,q

IpIq − Ī2 =
1

N2 

p=1

N

Ip
2 +

1

N2 

p�q

IpIq − Ī2. �A2�

This expression may be further simplified by noting that mo-
ments of the intensity at any pixel are equal to those of, let us

say, pixel 1: Ip
2 = I1

2 and Ip= I1= Ī. Hence

�I
2 =

1

N
I1

2 +
N�N − 1�

N2 Ī2 − Ī2 =
1

N
I1

2. �A3�

Similarly, one obtains

�I,J
2 =

1

N2

p,q

IpJq − ĪJ̄ =
1

N
G2 +

N�N − 1�
N2 ĪJ̄ − ĪJ̄ =

1

N
cIĪ

2,

�A4�

�G2,I =
1

N2

p,q

IpJpIq − G2Ī =
1

N
I1

2J1 −
1

N
G2Ī , �A5�

and

�G2

2 =
1

N2

p,q

IpJpIqJq − G2
2 =

1

N
I1

2J1
2 −

1

N
G2

2. �A6�

Equations �A3�–�A6� show that all the terms in the LHS of
the expression of �n

2, Eq. �6�, are indeed proportional to N−1.
As a final remark, we show that the form of the equations

derived above is not changed by a short-ranged correlation
between the intensity of distinct pixels, such as that typically
observed in the CCD speckle images. We consider, as an
example, the calculation of �I

2; similar arguments apply also
to the other variance and covariance terms. Because the spa-
tial correlation is short-ranged, the intensity of pixel p will
be correlated only to that of a small number M of nearby
pixels, whereas for all other pixels IpIq� Ip Iq. We indicate

TABLE I. Coefficients needed to calculate the contribution of
the measurement noise to �I,J��� ,�G2

2 ���, and �G2,I���.

�=0 �→�

�I,J��� �I
2 0

�G2

2 ��� �G2�0�
2

2Ī2�I
2

�G2,I��� �G2�0�,I Ī2�I
2
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the set of nearby pixels by Qp and split the double sum over
distinct pixels in Eq. �A2� as follows:

1

N2 

p�q

IpIq =
1

N2 

p,q�Qp

IpIq +
1

N2 

p,q�Qp

IpIq �
1

N



q�Q1

I1Iq

+
N�N − M�

N2 Ī . �A7�

By substituting Eq. �A7� in Eq. �A2� one finds that �I
2 still

scales as N−1, although with a different prefactor:

�I
2 =

1

N
I1

2 +
1

N



q�Q1

I1Iq −
M

N
Ī2. �A8�

APPENDIX B: PDF OF cI

We show here that in the limit of large N and for homo-
geneous dynamics the PDF of cI is Gaussian, as found ex-
perimentally �see Fig. 5�. Additionally, we will demonstrate

the relationship G2= Ī2�cI+1�. Note that this relationship is
not trivial, since in general �cI+1�= ��IpJp�p / IJ� differs from

�IpJp�p / Ī J̄=G2 / Ī2.

We start by noting that G2, I, and J are obtained from an
average over a large number N of pixels. Because of the
central limit theorem, their PDF is Gaussian, with a standard
deviation much smaller than the mean. Accordingly, at any
time G2�t�=G2�1+�G2

�t��, with �G2
a Gaussian distributed

random variable with mean �G2
=0 and variance 
N−1. One

can write similar expressions for I�t� and J�t�, so that to
leading order

G2

IJ
=

G2�1 + �G2
�

Ī�1 + �I�J̄�1 + �J�
�

G2

Ī2
�1 + �� , �B1�

where we have used J̄= Ī and have introduced
�=�G2

−�I−�J. � is the sum of three �partially correlated�
Gaussian random variables and therefore is itself Gaussian
distributed �50�, with mean �G2

−�I−�J=0. It follows that the
PDF of

cI =
G2

IJ
− 1 �

G2

Ī2
�1 + �� − 1 �B2�

is Gaussian, with mean cI=G2 / Ī2−1. Thus, G2= Ī2�cI+1�.
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